Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper presents the development of near-infrared (NIR) fluorescent probes, A and B, engineered from hemicyanine dyes with 1,8-naphthalic and rhodamine derivatives for optimized photophysical properties and precise mitochondrial targeting. Probes A and B exhibit absorption peaks at 737 nm and low fluorescence in phosphate-buffered saline (PBS) buffer. Notably, their fluorescence intensities, peaking at 684 (A) and 702 nm (B), increase significantly with viscosity, as demonstrated through glycerol-to-PBS ratio experiments. This increase is attributed to restricted rotational freedom in the fluorophore and its linkages to rhodamine or 1,8-naphthalic groups. Theoretical modeling suggests nonplanar configurations for both probes, with primary absorptions in the rhodamine and hemicyanine cores (A: 543; B: 536 nm), and additional transitions to 1,8-naphthalic (A: 478 nm) and rhodamine (B: 626 nm) groups. Probe A is also responsive to human serum albumin (HSA), a key biomarker, with fluorescence increasing in HeLa cells as HSA concentrations rise. In contrast, probe B shows no response to HSA, likely due to steric hindrance from its bulky rhodamine group, illustrating a selectivity difference between the probes. Probe B, however, excels in mitochondrial imaging, confirmed through cellular and in vivo studies. In HeLa cells, it tracked viscosity changes following treatment with monensin, nystatin, and lipopolysaccharide (LPS), with fluorescence increasing in a dose-dependent manner. In fruit flies, probe B effectively detected monensin-induced viscosity changes, demonstrating its stability and in vivo applicability. These findings highlight the versatility and sensitivity of probes A and B as tools in biological research, with potential applications in monitoring mitochondrial health, detecting biomarkers like HSA, and investigating mitochondrial dynamics in disease.more » « lessFree, publicly-accessible full text available January 6, 2026
-
Fluorescent probes play a crucial role in elucidating cellular processes, with NAD(P)H sensing being pivotal in understanding cellular metabolism and redox biology. Here, the development and characterization of three fluorescent probes, A, B, and C, based on the coumarin platform for monitoring of NAD(P)H levels in living cells are described. Probes A and B incorporate a coumarin-cyanine hybrid structure with vinyl and thiophene connection bridges to 3-quinolinium acceptors, respectively, while probe C introduces a dicyano moiety for replacement of the lactone carbonyl group of probe A which increases the reaction rate of the probe with NAD(P)H. Initially, all probes exhibit subdued fluorescence due to intramolecular charge transfer (ICT) quenching. However, upon hydride transfer by NAD(P)H, fluorescence activation is triggered through enhanced ICT. Theoretical calculations confirm that the electronic absorption changes upon the addition of hydride to originate from the quinoline moiety instead of the coumarin section and end up in the middle section, illustrating how the addition of hydride affects the nature of this absorption. Control and dose–response experiments provide conclusive evidence of probe C’s specificity and reliability in identifying intracellular NAD(P)H levels within HeLa cells. Furthermore, colocalization studies indicate probe C’s selective targeting of mitochondria. Investigation into metabolic substrates reveals the influence of glucose, maltose, pyruvate, lactate, acesulfame potassium, and aspartame on NAD(P)H levels, shedding light on cellular responses to nutrient availability and artificial sweeteners. Additionally, we explore the consequence of oxaliplatin on cellular NAD(P)H levels, revealing complex interplays between DNA damage repair, metabolic reprogramming, and enzyme activities. In vivo studies utilizing starved fruit fly larvae underscore probe C’s efficacy in monitoring NAD(P)H dynamics in response to external compounds. These findings highlight probe C’s utility as a versatile tool for investigating NAD(P)H signaling pathways in biomedical research contexts, offering insights into cellular metabolism, stress responses, and disease mechanisms.more » « less
An official website of the United States government
